Vaginal delivery in SARS-CoV-2 infected pregnant women in Northern Italy: a retrospective analysis.

Enrico Ferrazzia,b
Luigi Frigerioc
Valeria Savasid,e
Patrizia Verganif,g
Federico Prefumoh,i
Santa Barresic
Stefano Bianchib
Elena Cirielloc
Fabio Facchinettii
Maria Teresa Gervasik
Enrico Iurlaroa
Alessandra Kustermanna
Giovanna Mangilil
Fabio Moscam,b
Luisa Patanèc
Donata Spazzinin
Arsenio Spinilloo,p
Giuseppe Trojanoq
Michele Vignalir,s
Antonella Villat
GianVincenzo Zuccottiu,e
Fabio Parazzinia,b

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi:10.1111/1471-0528.16278

This article is protected by copyright. All rights reserved
Irene Cetin w,e.

a Department of Obstetrics and Gynecology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore PoliClinico, Milan, Italy
b Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
c Dept of Obstetrics and Gynecology, Papa Giovanni XXIII Hospital Bergamo, Italy
d Department of Woman, Mother and Neonate, Sacco Hospital-ASST Fatebenefratelli-Sacco Milan, Italy
e Dept of Clinical and Biological Sciences, University of Milan, Milan, Italy
f Department of Maternal Fetal Medicine, Fondazione MBBM, San Gerardo Hospital,
g University of Milano Bicocca, Monza, Italy
h Department of Obstetrics and Gynecology, Spedali Civili di Brescia
i University of Brescia
j Obstetrics Unit, Mother Infant Department, University Hospital Policlinico of Modena, Via del Pozzo 71, 41124. Modena, Italy
k Obstetrics and Gynecology Unit, Department of Woman’s and Child’s Health University Hospital of Padua, Italy.
l Department of Neonatology, Papa Giovanni XXIII Hospital Bergamo, Italy
m Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore
n Obstetrics and Gynecology Unit, Azienda Ospedaliera Bolognini, Seriate, Italy
o Department of Obstetrics and Gynecology, University of Pavia.
p IRCCS Foundation Policlinico San Matteo, Pavia, Italy
q Obstetrics and Gynecology Department “Madonna delle Grazie” Hospital, Matera
r Obstetrics and Gynecology Unit, P.O. Macedonio Melloni-ASST Fatebenefratelli-Sacco, Milan, Italy
s Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
t Obstetrics and Gynecology Unit, Hospital of Treviglio-Caravaggio, Bergamo, Italy
u Department of Pediatrics, Ospedale dei Bambini V. Buzzi, Milan, Italy
v Department of Woman, Mother and Neonate, Buzzi Children’s Hospital-ASST Fatebenefratelli-Sacco Milan, Italy

Corresponding author:
Fabio Parazzini
Via Commenda 12, 20100 Milan, Italy
University of Milan, 39-02-50320254
Fabio.parazzini@unimi.it

Running title: Delivery in SARS-CoV-2 infected women
Abstract

Objective: To report mode of delivery and immediate neonatal outcome in COVID-19 infected women.

Design: This is a retrospective study.

Setting: Twelve hospitals in northern Italy.

Participants: Pregnant women with COVID-19 confirmed infection who delivered.

Exposure: COVID 19 infection in pregnancy.

Methods: SARS-CoV-2 infected women who were admitted and delivered during the period 1-20 March 2020 were eligible. Data were collected from the clinical records using a standardized questionnaire on maternal general characteristics, any medical or obstetric co-morbidity, course of pregnancy, clinical signs and symptoms, treatment of COVID 19 infection, mode of delivery, neonatal data and breastfeeding.

Main Outcome and Measure: Data on mode of delivery and neonatal outcome.

Results: 42 women with COVID-19 delivered at the participating centres: 24(57,1%, 95% CI 41,0-72,3) delivered vaginally. An elective cesarean section was performed in 18/42 (42,9%, 95%CI 27,7-59,0) cases: in 8 cases the indication was unrelated to COVID-19 infection. Pneumonia was diagnosed in 19/42(45,2%, 95%CI 29,8-61,3) cases: of these 7/19(36,8%, 95CI 16,3-61,6) required oxygen support and 4/19(21,1%, 95%CI=6,1-45,6) were admitted to a critical care unit. Two women with COVID-19 breastfed without a mask because infection was diagnosed in the post-partum period: their new-borns tested positive for SARS-CoV-2 infection. In one case a new-born had a positive test after a vaginal operative delivery.

Conclusions: Although post-partum infection cannot be excluded with 100% certainty, these findings suggest that vaginal delivery is associated with a low risk of intrapartum SARS-Cov-2 transmission to the new-born.

Funding: No funding
Key words: delivery, COVID-19, transmission

Tweetable abstract:
This study suggests that vaginal delivery may be associated with a low risk of intrapartum SARS-Cov-2 transmission to the new-born.

INTRODUCTION.

Most of the information on the effect of COVID-19 infection during pregnancy is based on data relating to other highly pathogenic coronaviruses (i.e., severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome(MERS))\(^1\).

Recently Chen et al.\(^2\) have reported nine cases of deliveries in women with COVID-19 pneumonia. In their study all nine patients had a caesarean section in the third trimester. The neonatal outcomes were favourable and all neonatal throat swabs performed tested negative for the virus.

Another clinical series of 11 women with COVID 19 infection who had successful deliveries (10 cesarean and 1 vaginal) has been reported: in all the new-borns the 2019-nCoV nucleic acid test was negative\(^3\).

Chen et al concluded their paper by underlining that “there is currently no evidence for intrauterine infection caused by vertical transmission in women who develop COVID-19 pneumonia in late pregnancy”\(^2\). This finding is, however, based on very few reported cases, particularly for vaginally delivered newborns\(^3,4\). Accordingly, a recent consensus stated that there is no clear evidence regarding optimal delivery timing,
the safety of vaginal delivery, or whether cesarean delivery prevents vertical transmission at the time of delivery; therefore, route of delivery and delivery timing should be individualized based on obstetrical indications and maternal-fetal status.

Due to the recent outbreak of the infection in Italy, particularly in Lombardy, a number of infected women have already delivered. Regione Lombardia, Northern Italy, has established a network of six designated COVID-19 maternity hospitals in order to offer adequate assistance and epidemiological surveillance to symptomatic infected pregnant women. The goal of this study was to report the mode of delivery and immediate neonatal outcome in SARS-CoV-2 infected women observed in the early phase of the epidemic in Lombardy.

METHODS.

We performed a retrospective multicenter study of COVID-19 infected women who were admitted and delivered during the period 1-20 March 2020. Most deliveries of infected women occurred in the designated COVID-19 hubs, but some were delivered in spoke hospitals because they were in advanced active phase labour. Designated Hub-Maternity Hospitals were: Milan-Mangiagalli and Sacco, Bergamo-Pope Giovanni XXIII; Brescia-Civil Hospital; Monza-S. Gerardo Hospital/MBBM Foundation; Pavia-San Matteo. Spokes Maternity Hospitals were: Milan-Melloni and S. Giuseppe; Seriate-Bolognini; Treviglio-Civil Hospital. The Maternity Hospital of Padua and the Maternity Hospital of Modena were not hub hospitals of Lombardy Region, but also reported their cases for this study.

Criteria for entry to the study were:
- pregnant women who delivered during the study period with a confirmed diagnosis of COVID-19 infection prior to or within 36 hours after delivery.

The investigators reported all women consecutively observed who met the inclusion criteria. All centers carefully revised all delivery charts of the study period and all cases who had a confirmed throat swab by RT-PCR positive test for SARS-CoV-2 infection were included. The clinical triage was performed according to WHO guidelines. Diagnosis of COVID 19 infection was based on the results of maternal and child throat swab samples according to Italian National Procedures. All women were treated according to the National Guidelines for COVID-19 in pregnancy and treatment was then tailored according to the individual evolution of signs, symptoms, laboratory data and radiologic findings. There were no additional obstetric diagnostic procedures or monitoring in addition to normal clinical practice, apart from a confirmative chest x-ray, and 48 hours monitoring of white blood cell count and CRP.
Fetal growth and well-being were assessed at admission and the fetal heart rate was monitored continuously during labour and delivery.

Surgical mask for the labouring woman, her accompanying person and the midwife and/or doctor were worn during labours. More strict personal protective equipment (PPE) were worn during delivery, as bearing down expulsive efforts risk may cause the woman to emit infected droplets.

When the positive infected status of the mother was known at delivery, breast feeding was allowed according to international guidelines if the mother was asymptomatic or had only minor symptoms. Women were instructed how to wear and dispose of surgical masks, in combination with frequent hand-cleaning with alcohol-based hand rub or soap and water.

Data were collected from the clinical records using a standardised questionnaire on maternal general characteristics, any medical or obstetric co-morbidity, course of pregnancy, clinical signs and symptoms, treatment of COVID 19 infection, mode of delivery, neonatal data and breastfeeding. In relation to the neonatal outcome, we recorded only whether there was a positive or negative test for COVID-19. Women and new-borns were followed up until discharge from hospital or till March 25th, whatever came first.

For the recorded variables, averages, range or proportion and corresponding 95% confidence intervals (CI) were computed, as appropriate. Statistically significant differences among groups was tested using the common chi square test for heterogeneity.

No core outcome set was used in the research. This research was done without patient involvement. Patients were not invited to comment on the study design and were not consulted to develop patient relevant outcomes or interpret the results. Patients were not invited to contribute to the writing or editing of this document for readability or accuracy.

The study protocol was approved by the Institutional Review Boards.

No funding supports this study.

RESULTS.

A total of 42 women eligible for the study delivered in the participating centres. A total of 32 women delivered at hub hospitals and 10 in the spoke ones.

Diagnosis of COVID-19 infection was known before admission to hospital in 10 cases, in the delivery room in 27 cases and in 5 cases the diagnosis was made within 36 hours following delivery, while the women were still in hospital.
A total of 24/42 (57.1%, 95% CI= 41.0-72.3) women delivered vaginally, with three cases undergoing induction of labour for obstetric reasons.

An elective cesarean section was performed in 18/42 (42.9%, 95%CI 27.7-59.0) cases: in 8 cases the indication was unrelated to COVID-19 infection, but in 10 cases the indications were worsening dyspnoea or other COVID-19 related symptoms. In women who attempted vaginal delivery, no emergency cesarean section occurred.

The characteristics, signs, symptoms and treatment of COVID-19 infection of this cohort are presented in table 1 according to the mode of delivery. Mean maternal age was 32.9 (range 21-44). Fever was the most common symptom. Pneumonia was diagnosed in 19/42 (45.2%, 95%CI 29.8-61.3) cases. 7 of these 19 (36.8%,95CI 16.3-61.6) required oxygen support and 4 of the 19 (21.1%,95%CI=6.1-45.6) were admitted to a critical care unit. Pneumonia was more common in women who delivered by caesarean section due to COVID-19 related infection (chi-square=7.45, p-value= 0,024).

Table 2 presents the course of pregnancy and the neonatal outcome. Gestational diabetes was reported in 6/42 cases (14%) without any significant difference between the three groups. 30/42 (71.4%, 95%CI=55.4-84.3) women delivered at term. Spontaneous preterm birth occurred in 5 cases and in 6 cases elective cesarean section was performed.

Two very preterm new-borns had a 5min Apgar score <7; all the rest had 5 min Apgar scores of 7 or more.

Newborn outcomes and breastfeeding

In 10 cases breastfeeding was allowed, with the women using a surgical mask. Two women had a new diagnosis of COVID-19 infection in the post-partum period and breastfed without a surgical mask; both the new-borns had a positive test for COVID-19 infection at day one and three, respectively. In another case after vaginal delivery the new-born of an infected woman had a positive test. This case deserves additional details. One newborn from a COVID-19 mother delivered vaginally at term in good condition was immediately separated because of a severe maternal postpartum haemorrhage. Within a few hours he developed gastrointestinal symptoms, and after three days he developed respiratory symptoms and was transferred to the neonatal intensive care unit where he recovered after one day of mechanical ventilation. The first test for SARS-CoV-2 was equivocal a few hours after delivery, but positive three days later. The mother did not breastfeed. No associated health care providers had a confirmed diagnosis of COVID-19 infection. No other positive test was found among the new-borns.

DISCUSSION.
Main findings
This paper reports the obstetric outcome of a cohort of COVID-19 affected pregnant women and the rate of SARS-CoV-2 positivity in new-borns according to the mode of delivery and breastfeeding status. The general results show that vaginal delivery occurred in about the 60% of women. A low risk of intrapartum SARS-CoV-2 transmission to the new-born cannot be excluded. Further, the majority of pregnant women affected by the COVID-19 respiratory syndromes suffered mild or moderate symptoms. Fever, cough and mild dyspnoea were the most common symptoms, (80%), but pneumonia was diagnosed in about the 40% of women.

Strengths and limitations
Among the strengths of this analysis we have to consider the fact that we have included in our study all consecutive positive women delivered in, or admitted to the post-partum COVID-19 ward, in all maternity units of the COVID-network in Lombardy and Units of Padua and Modena, so as to be sure to include all symptomatic cases who tested positive on the nasopharyngeal sampling. The reported cases represent approximately 0.6% of the total deliveries occurring in the same area during the 20 days of the study. Among the limitations we should underline that due to the limited follow up, the not immediate maternal and new-born outcome was not considered.

Interpretation
In our study, the maternal conditions were generally mild to moderate. Radiologically confirmed pneumonia was diagnosed in 42% of cases and four of these 19 cases required admission to a critical care unit. As suggested by others, the findings of our cohort support the hypothesis that COVID-19 respiratory syndrome may be less severe for maternal prognosis than SARS and MERS. Lymphopaenia and high CRP values were part of the clinical scenario that induced clinicians to deliver patients by cesarean section.

Of note, two cases were delivered < 34 weeks of gestation because of worsening respiratory function. Five women delivered spontaneously before term (one before 34 weeks of gestation). These observations are compatible with no increase in the risk of preterm birth, consistent with the findings of a previously published series reporting no cases of preterm birth before 33 weeks of gestation.

Vertical and intrapartum transmission are among the most serious complications of viral diseases during pregnancy. In the previously quoted published series of a total of 30 women, delivery in all but one cases was by cesarean section. No new-born infection was reported. Vertical transmission does not seem to occur after infection with other pathogenic coronaviruses such SARS-CoV and MERS-CoV infection, although it has been suggested that coronaviruses may cause early pregnancy loss.
Previous data on virus transmission are based substantially on women delivered by cesarean section. Vertical transmission of viral infection generally occurs during intrauterine life by transfer across the placenta, or during delivery by ingestion or aspiration of cervicovaginal secretions, and in the postpartum period via breastfeeding. The risk of ingestion or aspiration of cervical secretion or with contact with perineal infected tissue is of course higher in case of vaginal delivery. Among the 24 women who delivered vaginally, one new-born was infected probably due to post-partum contamination (see below). In a second cases after vaginal delivery a potential intrapartum infection may have occurred, but it was not possible to exclude infection immediately post-partum.

It should be emphasised that we can only consider the risk of transmission among women who were infected during the third trimester or at term and the risk of intrapartum transmission, because the infections in Northern Italy are all recent, and women infected in early pregnancy are still pregnant.

We report five cases who were diagnosed to be COVID-19 positive because of fever in the post-partum period. In two cases in which skin to skin contact after birth and breastfeeding was allowed without a mask because infection was not known, the COVID-19 test of the new-born was positive at days 1 and 3 after birth. Although no viral load has been detected in breast milk by Chan et al., close maternal contact may represent a potential route of transmission. In these two cases, because viral testing was not carried out immediately after birth, vertical transmission cannot be excluded. To our knowledge, other two cases of SARS-CoV-2 infected new-borns have been reported in which the diagnosis was made 36 hours following delivery and at 17 days of life. In both cases a postpartum neonatal infection acquired through an infected contact was suggested. In all these cases, because viral testing was not performed immediately after birth, the route of transmission cannot be definitely established.

Elevated IGM antibodies against Coronavirus have been also reported in a case after caesarean section by Dong et al. Three additional newborns with elevated IGM antibodies to SARS-COV-2 virus, but a throat swab by RT-PCR negative test, have been also reported. Caution in interpreting these findings has been suggested, including the possibility that IGM positivity could represent a laboratory artifact.

Conclusion.

The frequency of COVID-19 symptoms and positive laboratory and radiologic findings observed in this cohort is in line with the fact that this syndrome is generally mild or moderate in pregnancy and very likely many infected pregnant women are totally asymptomatic or develop symptoms only after delivery. Vaginal delivery is appropriate in mild cases and caesarean section should be reserved for women with severe respiratory embarrassment where delivering the baby will allow improved ventilation. Although post-partum...
infection cannot be excluded, our study also suggests that vaginal delivery may be associated with a low risk of intrapartum SARS-Cov-2 transmission to the newborn. This finding needs further data. The observed occurrence of COVID-19 symptoms only after delivery suggests that, in areas characterized by a high prevalence of infection, safe procedures for midwives and doctors are to be recommended in any labour and to adopt mask and safe procedures in all breastfeeding women.

Disclosure of interests
All the authors declare no competing interests. Completed disclosure of interest forms are available to view online as supporting information.

Contribution to authorship
FP, EF, IC and LF each led aspects of the contact investigation and provided overall leadership and guidance to the investigation.
FM, GZ and GM were the pediatricians in charge of treatment of the newborn babies in the main collaborating centres.
LF, VS, PV, SB, FF, MTG, Ei, AK, BM, LP, FeP, DS, AS, GT, PV, MV, AV completed the investigation of cases and/or collected epidemiological data, and provided clinical care to the patients and assisted with clinical descriptions.
FP and EF drafted the manuscript.
IC revised the manuscript.
All authors reviewed and approved the final manuscript.

Details of Ethics approval
The study was approved by the Institutional Review Boards (15408/2020 IRB Milan Area 1).

Acknowledgements
For their partnership and dedication, we wish to say thanks to the obstetricians, the midwives and the health providers of the participating centres that in these dramatic days have assisted the women during their delivery.

Data sharing
With the permission of the corresponding authors, we can provide data without names and identifiers. The corresponding authors have the right to decide whether to share the data or not based on the research objectives and plan provided.
Fabio Parazzini affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

Funding: No funding
REFERENCES

This article is protected by copyright. All rights reserved
Table 1. Maternal characteristics and symptoms.

<table>
<thead>
<tr>
<th>Maternal characteristics</th>
<th>Elective Cesarean section for conditions determined by COVID-19 respiratory syndrome (No.= 10)</th>
<th>Elective Cesarean section for obstetric reasons unrelated with COVID-19 respiratory syndrome (No.=8)</th>
<th>Vaginal delivery° (No.=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age (mean, range)</td>
<td>30.9 (21-40)</td>
<td>30.5 (27-44)</td>
<td>34.6 (29-43)</td>
</tr>
<tr>
<td>Nulliparous women</td>
<td>4(40%)</td>
<td>2(25%)</td>
<td>9 (38%)</td>
</tr>
<tr>
<td>Sign and symptoms of SARS-Cov-2-infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever before delivery</td>
<td>7(70%)</td>
<td>4(40%)</td>
<td>9(38%)</td>
</tr>
<tr>
<td>Fever only in the post partum</td>
<td>-</td>
<td>1(13%)</td>
<td>5(21%)</td>
</tr>
<tr>
<td>Myalgia/malaise</td>
<td>5(50%)</td>
<td>-</td>
<td>2(8%)</td>
</tr>
<tr>
<td>Cough</td>
<td>8(80%)</td>
<td>2(25%)</td>
<td>8(33%)</td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>7(70%)</td>
<td>-</td>
<td>1(4%)</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>-</td>
<td>1(13%)</td>
<td>1(4%)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>8(80%)</td>
<td>4(50%)</td>
<td>7(29%)</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen support (nasal cannula, CPAP)</td>
<td>4(40%)</td>
<td>1(13%)</td>
<td>2(8%)</td>
</tr>
<tr>
<td>Admission to critical care unit (yes)</td>
<td>2(20%)</td>
<td>1(13%)</td>
<td>1(4%)</td>
</tr>
<tr>
<td>Laboratory findings</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
High leukocyte count (>9.5 × 10⁹ cells per L)°° 3(30%) 2(25%) 11(46%)
Lymphopenia (<10⁹ cells per L)°° 3(30%) 1(13%) 2(8%)
Elevated C-reactive protein (>10 mg/L)°° 7(70%) 4(50%) 6(25%)
Elevated ALT (>45 U/L) or AST (>35 U/L)°° 2(20%) - 3(13%)

° In 3 cases labour was induced for obstetric indication unrelated with COVID 19 respiratory syndrome. °°6 cases missing

Table 2. Pregnancy, delivery and neonatal outcome.

<table>
<thead>
<tr>
<th>Pregnancy and delivery</th>
<th>Elective Cesarean section for conditions determined by COVID-19 respiratory syndrome (No.= 10)</th>
<th>Elective Cesarean section for obstetric reasons unrelated with COVID-19 respiratory syndrome (No.=8)</th>
<th>Vaginal delivery (No.=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational diabetes (yes)</td>
<td>2(20%)</td>
<td>-</td>
<td>4 (17%)</td>
</tr>
<tr>
<td>Weeks of gestation at delivery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>37</td>
<td>>34-37</td>
<td><=34</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>5 (50%)</td>
<td>7 (88%)</td>
<td>18 (78%)</td>
</tr>
<tr>
<td></td>
<td>3 (30%)</td>
<td>-</td>
<td>4 (17%)</td>
</tr>
<tr>
<td></td>
<td>2 (20%)</td>
<td>1 (13%)</td>
<td>1 (4%)</td>
</tr>
</tbody>
</table>

New-born

<table>
<thead>
<tr>
<th>Parameter</th>
<th>>37</th>
<th>>34-37</th>
<th><=34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth weight (grams; mean, range)°°</td>
<td>2730(840-4040)</td>
<td>3100(2770-3430)</td>
<td>3226(2450-3740)</td>
</tr>
<tr>
<td>Apgar score (5min)>7</td>
<td>8(80%)</td>
<td>8(100%)</td>
<td>24(100%)</td>
</tr>
<tr>
<td>NICU admission (Yes)</td>
<td>-</td>
<td>1 (13%)***</td>
<td>2(8%)***</td>
</tr>
<tr>
<td>Positivity to SARS-Cov-2 (Yes)</td>
<td>0</td>
<td>1(13%)</td>
<td>2(8%)</td>
</tr>
<tr>
<td>Breastfeeding (Yes)</td>
<td>0</td>
<td>1(12%)</td>
<td>10(42%)</td>
</tr>
</tbody>
</table>

NICU: Neonatal Intensive Care Unit.

*1 case missing

°°5 cases missing

***for preterm birth/respiratory distress