Risk Factors for SARS-CoV2 Infection in Pregnant Women

Ms. Allie SAKOWICZ, MS1, Mr. Alexander E. AYALA, BA2, Ms. Chideraa C. UKEJE, BA2, Ms. Celeste S. WITTING, BS2, William A. GROBMAN, MD, MBA1, Emily S. MILLER, MD, MPH1

1. Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611, USA.
2. Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611, USA.

Disclosures: The authors report no conflict of interest.

Funding: Research reported in this publication was supported, in part, by the National Institutes of Health's National Center for Advancing Translational Sciences, Grant Number UL1TR001422. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Corresponding Author: Allie Sakowicz, MS, 250 E. Superior St., Room 05-2175, Chicago, IL 60611; Phone: 847-602-7713; Fax: 312-472-3740; e-mail: Allison.Sakowicz@northwestern.edu

Word count (abstract): 351
Word count (main text): 2940
Condensation: In addition to previously identified risk factors, having living children at home represents a significant risk factor for infection with SARS-CoV2 among pregnant women.

Short Title: SARS-CoV2 Risk Factors in Pregnancy

AJOG at a Glance:

A. Why was the study conducted?
Risk factors for SARS-CoV2 infection in pregnancy remain poorly understood. Identifying those populations at heightened risk of acquisition is essential to effectively target outreach and prevention efforts.

B. What are the key findings?
Compared to women who tested negative for SARS-CoV2, women who tested positive were younger and were more likely to have public insurance, to identify as Black/African-American or Latina, to be unmarried, to be obese, have pre-existing pulmonary disease, and have living children. An increasing number of living children was associated with an increasing risk of SARS-CoV2 infection and this finding persisted after controlling for potential confounders.

C. What does this study add to what is already known?
In addition to previously identified risk factors, having living children at home represents a significant risk factor for infection with SARS-CoV2 among pregnant women.
Keywords: COVID-19, health disparities, perinatal epidemiology, social determinants of health
Abstract

Background: Risk factors for SARS-CoV2 infection in pregnancy remain poorly understood. Understanding populations at heightened risk of acquisition is essential to more effectively target outreach and prevention efforts.

Objective: To compare sociodemographic and clinical characteristics of pregnant women with and without SARS-CoV2 infection and, among those with SARS-CoV2, to compare characteristics of those who reported COVID-19 symptoms and those who were asymptomatic at diagnosis.

Study Design: This retrospective cohort study includes pregnant women who delivered or intended to deliver at Northwestern Memorial Hospital after initiation of a universal testing protocol on admission (April 8, 2020 - May 31, 2020). Women were dichotomized by whether they tested positive for SARS-CoV2. Among women who tested positive, women were further dichotomized by whether they endorsed symptoms of COVID-19. Bivariable analysis, and non-parametric tests of trend were used for analyses. Logistic regression was used to control for potential confounders as well as to examine effect modification between race and ethnicity and any other identified risk factors.

Results: During the study period, 1,418 women met inclusion criteria, of whom 101 (7.1%) tested positive for SARS-CoV2. Of the 101 women who tested positive, 77 (76.2%) were symptomatic at the time of diagnosis. Compared to women who tested
negative for SARS-CoV2, women who tested positive were younger and were more
likely to have public insurance, to identify as Black/African-American or Latina, to be
unmarried, to be obese, have pre-existing pulmonary disease, and have living children.
An increasing number of living children was associated with an increasing risk of SARS-
CoV2 infection and this finding persisted after controlling for potential confounders.
There was no effect modification between race or ethnicity and having living children
with regard to the risk of infection. There were no significant differences identified
between women who were symptomatic and asymptomatic.

Conclusion: Many risk factors for SARS-CoV2 infection in pregnancy are similar to the
social and structural determinants of health that have been reported in the general
population. The observed association between SARS-CoV2 infection and having children
raises the possibility of children themselves as vectors of viral spread or behavior patterns
of parents as mediators of acquisition.
Introduction

Since December 2019, Coronavirus Disease 2019 (COVID-19) has spread rapidly throughout the world. It has now caused over fourteen million infections worldwide, with over three million infections in the United States1,2. Emerging antibody surveillance data have suggested that many individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) do not manifest clinical symptoms. As such, many cases of the infection are thought to be as a result of spread from asymptomatic individuals3,4. Infection with SARS-CoV2 in pregnancy has been associated, in some studies, with higher rates of miscarriage, preterm birth, and preeclampsia5. The neonates born to women with SARS-CoV2 have been found to have higher rates of perinatal mortality and admission to the neonatal intensive care unit5. Accurately identifying pregnant women infected with SARS-CoV2 is imperative for appropriate management and treatment. Their identification also allows frontline healthcare workers to improve their protection and take precautions to mitigate the spread of the virus.

Little research has been conducted on risk factors for SARS-CoV2 infection specific to pregnant women. Whether observed associations in the general population apply to pregnant women, or whether unique risk factors can be identified specific to pregnant women, is unknown. For example, an overrepresentation of racial and ethnic minority groups in COVID-19 hospitalizations and deaths has been demonstrated in the general population6,7. However, whether these disparities remain true among pregnant women, who may have different behaviors and exposures, has not been investigated. The American College of Obstetrics and Gynecology (ACOG) recently called for health
institutions to collect data on SARS-CoV2 testing and outcomes that can recognize and examine the ways in which health care systems perpetuate racial inequalities in access to care and in health outcomes. Robust research on these factors can help institutions determine the most efficient way to distribute scarce resources to those women most in need.

Public health interventions, such as school closures, have been shown to decrease the risk of community viral spread on a population level. Epidemiologists have found that while children are less likely to exhibit SARS-CoV2 symptoms compared to adults, they also have more subtle presentations and may spread disease to family members at home. On an individual level, these data suggest that families with children at home, particularly families who are not able to physically distance, may be at higher risk of SARS-CoV2 acquisition. As many pregnant women in the United States have young children at home, they may be a particularly vulnerable population for SARS-CoV2 acquisition, but this association has not been previously evaluated.

Universal SARS-CoV2 testing among pregnant women represents an opportunity to better understand epidemiologic risk factors. As our hospital is a large volume center located in a high prevalence region of the United States, our objective was to leverage data ascertained from our testing policies to characterize the epidemiology of SARS-CoV2 infection overall, as well as symptomatic infection, among pregnant women.
Materials and Methods

Study Design

This retrospective cohort study includes pregnant women who were tested for SARS-CoV2 at Northwestern Memorial Hospital or affiliated outpatient clinics between March 19, 2020 and May 31, 2020. Northwestern Memorial Hospital is a tertiary care referral center in which approximately 12,000 deliveries are performed annually. Routine care during the entire study period was to perform systematic screening using a comprehensive list of reported symptoms for COVID-19, including fever, shortness of breath, cough, sore throat, body aches, chills, new onset vomiting, diarrhea, loss of taste or smell, or red or painful eyes.

Beginning on March 19, 2020, women who presented with clinical concern for COVID-19 underwent testing for SARS-CoV2. Universal point-of-care testing for SARS-CoV2 was performed for all women presenting for delivery or with pregnancy complications necessitating admission to the Labor & Delivery or Antepartum unit after April 8, 2020. During the time period of March 19 to April 7, 2020, women who were symptomatic and tested positive for SARS-CoV2 were included. During the time period of April 8 to May 19, 2020, all women who were tested for SARS-CoV2, including symptomatic and asymptomatic positive patients as well as patients who tested negative, were included. During the time period of May 20 to May 31, 2020, only women who tested positive for SARS-CoV2, both symptomatic and asymptomatic, were included. Women with scheduled admissions were tested 12-36 hours prior to the admission at a designated drive-through testing center using an in-house polymerase chain reaction (PCR)-based
platform with an 8-hour turnaround time. Women who presented in labor or with another
unscheduled indication for admission were tested either in obstetric triage or on the Labor
& Delivery unit using a commercially available PCR-based platform with a 2-3 hour
turnaround time. Women who tested negative at admission but who developed possible
symptoms of COVID-19 (e.g., an intrapartum fever without an alternative diagnosis)
were retested as clinically indicated.

Testing was performed on nasopharyngeal specimens that were collected by registered
nurses with special training in the proper collection and handling of the specimen.

Data Collection
Electronic health records were reviewed for all pregnant women identified to have a
SARS-CoV2 test performed. Demographic and clinical data included maternal age, self-
reported race/ethnicity, and insurance status. Medical history data included body mass
index at delivery, tobacco use, and any identified maternal pre-existing disease (e.g.,
diabetes, hypertension, pulmonary disease). Obstetric data included parity (e.g., term
births, preterm births, and living children). The systematic symptom assessment was
entered into the EHR in a form completed by the admitting nurse and was abstracted to
the database. Details of the SARS-CoV2 testing platform utilized, as well as test results,
were also abstracted. Data were entered into the research electronic data capture system
(REDCap) and missing or aberrant data were re-reviewed by systematic assessment of
the database.
Women were dichotomized by their SARS-CoV2 test results. For women who tested positive, they were further dichotomized by whether they exhibited any symptoms of COVID-19 on the systematic review. Bivariable analyses were used to compare the clinical characteristics associated with women who did and did not test positive for SARS-CoV2. Mann Whitney U tests were used for continuous variables and chi squared or Fisher’s exact tests were used for categorical variables. A non-parametric test of trend was performed to identify whether an increasing number of children was associated with SARS-CoV2 positivity.

Logistic regression was performed to control for potential confounders in the relationship between having children and SARS-CoV2 infection. Race, ethnicity, public insurance, and marital status ultimately reflect overlapping constructs without direct biological mechanisms for SARS-CoV2 acquisition. Accordingly, only insurance was included in the primary model as it was felt to best reflect social and structural determinants of health. This regression otherwise included variables associated with SARS-CoV2 infection in bivariable analysis with p<0.05. A sensitivity analysis was performed including all variables associated with SARS-CoV2 infection (p<0.05). Interaction terms were used to evaluate potential effect modification between race or ethnicity and having living children. Data were analyzed with Stata Version 15 (College Station, TX). This study was approved by the Northwestern University Institutional Review Board with a waiver of consent prior to its initiation.
Results

Patient Characteristics

During the study period, 1,510 SARS-CoV2 tests were performed on 1,418 unique pregnant women at Northwestern Memorial Hospital. Of these 1,418 women, 101 (7.1%) tested positive for SARS-CoV2. No patients declined SARS-CoV2 testing during the study period.

Women with SARS-CoV2 infection

The demographic characteristics of the cohort are presented in Table 1. Compared to women who tested negative, women who tested positive for SARS-CoV2 were younger and more likely to be publicly insured, to identify with a racial or ethnic minority group, and to be unmarried. In addition, women who tested positive for SARS-CoV2 were more likely to be obese and to have a pre-existing pulmonary disease. In terms of obstetric characteristics, women who tested positive for SARS-CoV2 were less likely to be nulliparous and, accordingly, were more likely to have living children. Furthermore, an increasing number of living children was associated with an increased prevalence of SARS-CoV2 infection (Figure 1, p<0.001 for test of trend). Specifically, compared to women without any living children, women with more living children exhibited an increasing odds of testing positive for SARS-CoV2 [OR 2.5 (95% CI 1.5-4.0); OR 2.1 (95% CI 1.0-4.1); OR 4.1 (95% CI 1.6-10.5); OR 7.0 (95% CI 2.8-17.7), for having 1, 2, 3, or at least 4 living children, respectively).
In multivariable analyses of the relationship between having living children and SARS-CoV2 infection (including maternal age, insurance, obesity, and pulmonary disease as potential confounders), having living children remained significantly associated with SARS-CoV2 infection (Table 2). Inclusion of all variables in the model that were significantly associated with SARS-CoV2 infection did not substantively change the association (aOR 2.29, 95% CI 1.11-4.74). There was no significant effect modification between race or ethnicity and number of living children with respect to SARS-CoV2 infection.

Demographics of asymptomatic women with SARS-CoV2 infection

Among women diagnosed with SARS-CoV2, 77 (76.2%) were symptomatic upon presentation (Table 3). Importantly, these data included epochs wherein only women with overt symptoms of COVID-19 could be tested for SARS-CoV2. Accordingly, 76.2% is not reflective of population level symptom prevalence. No significant differences between women who presented with and without symptoms were found in terms of maternal age, use of public insurance, nulliparity, number of living children, race, ethnicity, marriage status, BMI at delivery, rates of obesity, tobacco use, presence of any maternal chronic disease, rates of pre-existing diabetes, rates of hypertension, rates of pulmonary disease, and rates of gestational diabetes.

Discussion

Principal Findings
In this large observational cohort of pregnant women tested for SARS-CoV2 in an epidemiologic epicenter within the United States, we identified several risk factors for SARS-CoV2 infection including identifying with a racial or ethnic minority subgroup or having living children. SARS-CoV2 has previously been documented to disproportionately affect racial and ethnic minorities, but to the best of our knowledge, this is the first study that identifies these associations in pregnant women. Moreover, this is the first study to identify having living children as a risk factor for SARS-CoV2 infection.

Results and Clinical Implications

These data demonstrate that women with living children at home were more likely to be infected with SARS-CoV2. Although children make up only 1-2% of all known SARS-CoV2 cases, their presentation is often more subtle and may be missed, potentially allowing them to act as vectors of asymptomatic spread. Of children with SARS-CoV2, 5-7% are asymptomatic, and 51-65% have only routine upper respiratory symptoms without cough or auscultatory abnormalities. Of children who are symptomatic, the presentation typically includes fever, but they are otherwise less visibly ill and their symptoms are often atypical. A recent clinical report describes five children in China who were originally admitted for non-respiratory symptoms, but ultimately tested positive for SARS-CoV2. In this report, four out of the five children studied had GI symptoms as the first manifestation of disease, raising the possibility SARS-CoV2 may not be identified in children at symptom onset. Ultimately, the average number of secondary infections transmitted within a family when a child is diagnosed with SARS-
CoV2 is 2.412. These data become increasingly important in the context of discussions on school and daycare re-opening across the United States. A recent study from South Korea demonstrated that young children with COVID-19 (under age 10) were roughly half as likely to spread the infection to others, but older children (ages 10 to 19) were more likely to infect other household contacts compared to adults15. We do not have the age of living children available in our data, and so we are unable to assess whether the age of living children moderates the observed risk. In addition, we are unable to assess whether it is the number of children within the household itself that is a risk factor for SARS-CoV2 acquisition, or whether the number of children at home is a surrogate marker for other structural determinants of health such as decreased capacity to physically distance within the home or increased exposures outside of the home to support the needs of the family. These findings suggest that having children at home may partially explain the increased rate of infection amongst women with living children. While causal attribution cannot be made, the finding of an increasing prevalence of SARS-CoV2 infection with increasing numbers of living children suggests that children may contribute to viral spread among pregnant women.

Other data has shown that the COVID-19 pandemic is disproportionately affecting individuals who identify as a racial or ethnic minority19. This relationship has been demonstrated in other pandemics, including the 1918 and 2009 influenza pandemics20,21. Individuals who identify as a minority race or ethnicity may have less of an opportunity to engage in public health prevention strategies due to social and structural determinants of health. One example of this pertains to differences in occupations. According to CDC
data, racial/ethnic minority populations in the United States workforce are overrepresented in essential industries. Nearly a quarter of employed Latino/a and Black or African-American workers are employed in service industry jobs as compared to 16% of non-Hispanic white workers22. These workers may not be as readily able to practice risk-reducing social distancing behavior or work from home, increasing their likelihood of exposure to SARS-CoV2. Additionally, they may work within industries that are less likely to have benefits such as paid sick leave22, a measure proven to mitigate contagion of viral respiratory illnesses23,24. Alternatively, the number of living children may reflect a higher household density, independent of children themselves as a vector. This may inhibit ability of pregnant women to social distance and isolate children infected with SARS-CoV2. Finally, residential segregation by race or ethnicity may also contribute to disparities in SARS-CoV2 prevalence.

These data also reinforce prior findings that SARS-CoV2 infection cannot be reliably identified based on symptomatic screening alone25,26. Universal testing for pregnant women being admitted for labor should be considered in areas of high disease burden as symptomatic screening alone is insufficient to identify all women with SARS-CoV2 infection.

\textit{Strengths & Limitations}

An important strength of this study is the large sample size with a relatively high prevalence of SARS-CoV2 infection in our geographic region. However, this study is also subject to limitations. First, these data are limited to a single tertiary care center, and
may not be generalizable to other populations. Our data may differ from other institutions
given the differences in patient populations between institutions. Future work in other
settings may uncover other risk factors not observed in our cohort. Larger multi-center
studies focused on pregnant women are an important next step in epidemiologic analyses.
Secondly, SARS-CoV2 PCR assays have a wide range of measured false negative rates.
A case report has been published that describes a negative nasopharyngeal SARS-CoV2
reverse transcriptase (RT) PCR test followed by positive SARS-CoV2 RT PCR using a
bronchoalveolar lavage specimen in a pregnant woman27. False negative rates of 17-63%
have been reported when using this test in the non-pregnant population28,29. While false
negative results would potentially reduce the order of magnitude of identified risk factors,
they should not systematically bias our results. Next, this study uses the living children
component of parity as a proxy for living children in the home and thus does not account
for all social contexts, for example women with children in foster care or children of
other family members residing in the home. However, as these contexts are unlikely to
systematically bias the associations observed and are epidemiologically uncommon, we
do not think the use of this proxy substantially altered the true association. Finally, as
symptoms were recorded in a designated form at the time of admission, the possibility
remains that there are lapses in this recording system, and thus, women who are classified
as asymptomatic did have atypical or mild symptoms or developed symptoms after their
admission. Given the novel nature of the COVID-19 pandemic, not all information
regarding the virus, disease presentation, or disease progression are known and
misclassification remains possible. This study spans a timeframe of April and May 2020,
closures were common. Thus, these data may not necessarily be transposable to earlier or later epochs of the pandemic or in areas where other public health strategies were implemented.

Research Implications

The identified association between having living children and SARS-CoV2 infection augments growing concern that asymptomatic or mildly symptomatic children may contribute to disease spread. As pregnant women are a population with a disproportionate exposure to young children at home, future research should corroborate this association and evaluate interventions targeted for multiparous women, such as augmented public health messaging about hand-washing and the utilization of masks to prevent airborne transmission.

Conclusions

This study reinforces the significant racial and ethnic disparities that exist in SARS-CoV2 infections among pregnant women and the critical need for public health interventions to combat them. Currently, Chicago’s Racial Equity Rapid Response Team (RERRT) strives to address COVID-19 related disparities with targeted interventions. RERRT aims to increase testing in Southside Chicago, host virtual town halls in underserved neighborhoods, and overall lessen the burden that this unprecedented public health crisis has created for Chicago’s racial and ethnic minority groups. Similar community efforts focused on health equity will be important to attempt to mitigate the observed disparities.

In addition to recognizing the racial and ethnic disparities in identified SARS-CoV2
infections, obstetric clinicians must consider how changes in obstetric care delivery for women diagnosed with SARS-CoV2 may disproportionately affect socially vulnerable or disadvantaged women. Awareness of the epidemiologic factors associated with SARS-CoV2 infection in pregnancy and the corresponding disparities that exist is the requisite first step to improving health equity. The onus is on us to ensure it is not the only step.
References

Table 1: Maternal Characteristics Stratified by SARS-CoV2 Infection Status

<table>
<thead>
<tr>
<th>Maternal Characteristic</th>
<th>SARS-CoV2 Status</th>
<th>SARS-CoV2 Status</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=1317</td>
<td>n=101</td>
<td></td>
</tr>
<tr>
<td>Maternal age (y)</td>
<td>33.7 (30.9-36.3)</td>
<td>30.6 (26.2-33.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Public insurance (n=1408)</td>
<td>218 (16.7%)</td>
<td>62 (62.0%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Race (n=1417)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>104 (7.9%)</td>
<td>3 (3.0%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Black or African American</td>
<td>141 (10.7%)</td>
<td>28 (28.0%)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>772 (58.6%)</td>
<td>23 (23.0%)</td>
<td></td>
</tr>
<tr>
<td>Other/unknown</td>
<td>300 (22.8%)</td>
<td>46 (46.0%)</td>
<td></td>
</tr>
<tr>
<td>Latina ethnicity (n=1341)</td>
<td>244 (19.7%)</td>
<td>53 (53.5%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Married</td>
<td>1027 (78.0%)</td>
<td>40 (39.6%)</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI at delivery (kg/m2) (n=1307)</td>
<td>29.8 (26.9-33.3)</td>
<td>32.3 (28.9-34.6)</td>
<td>0.002</td>
</tr>
<tr>
<td>Obesity (n=1307)</td>
<td>603 (48.0%)</td>
<td>35 (70.0%)</td>
<td>0.002</td>
</tr>
<tr>
<td>Tobacco use (n=1413)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>1181 (89.8%)</td>
<td>89 (90.8%)</td>
<td>0.50</td>
</tr>
<tr>
<td>Past</td>
<td>119 (9.1%)</td>
<td>7 (7.1%)</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>15 (1.1%)</td>
<td>2 (2.0%)</td>
<td></td>
</tr>
<tr>
<td>Any maternal chronic disease</td>
<td>452 (34.3%)</td>
<td>42 (44.2%)</td>
<td>0.051</td>
</tr>
<tr>
<td>Pre-existing diabetes</td>
<td>20 (1.5%)</td>
<td>1 (1.0%)</td>
<td>1.00</td>
</tr>
<tr>
<td>Hypertension</td>
<td>56 (4.3%)</td>
<td>7 (6.9%)</td>
<td>0.21</td>
</tr>
<tr>
<td>Pulmonary disease</td>
<td>179 (13.6%)</td>
<td>22 (21.8%)</td>
<td>0.023</td>
</tr>
<tr>
<td>Gestational diabetes (n=1314)</td>
<td>87 (6.9%)</td>
<td>6 (12.8%)</td>
<td>0.12</td>
</tr>
<tr>
<td>Nulliparous (n=1415)</td>
<td>677 (51.5%)</td>
<td>30 (30.0%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Any living children (n=1415)</td>
<td>622 (47.3%)</td>
<td>70 (70.0%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Number of living children</td>
<td>0 (0-1)</td>
<td>1 (0-1)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

BMI=body mass index

Data presented as median (interquartile range) or n (%)
Table 2: Multivariable Analyses for the Outcome of SARS-CoV2 Infection Status

<table>
<thead>
<tr>
<th>Maternal Characteristic</th>
<th>Odds Ratio</th>
<th>95% CI</th>
<th>Adjusted Odds Ratio*</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age (y)</td>
<td>0.89</td>
<td>0.84-0.94</td>
<td>0.94</td>
<td>0.88-1.01</td>
</tr>
<tr>
<td>Public insurance</td>
<td>8.15</td>
<td>5.31-12.53</td>
<td>4.38</td>
<td>2.03-9.48</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>0.96</td>
<td>0.29-3.28</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Black or African American</td>
<td>6.67</td>
<td>3.73-11.91</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>White</td>
<td>ref</td>
<td>ref</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Other/unknown</td>
<td>5.15</td>
<td>3.07-8.64</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Latina ethnicity</td>
<td>4.71</td>
<td>3.10-7.17</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Married</td>
<td>0.18</td>
<td>0.12-0.28</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Obesity</td>
<td>2.53</td>
<td>1.36-4.68</td>
<td>1.65</td>
<td>0.82-3.31</td>
</tr>
<tr>
<td>Pulmonary disease</td>
<td>1.77</td>
<td>1.08-2.91</td>
<td>1.58</td>
<td>0.78-3.23</td>
</tr>
<tr>
<td>Any living children</td>
<td>2.60</td>
<td>1.67-4.04</td>
<td>2.33</td>
<td>1.13-4.78</td>
</tr>
</tbody>
</table>

*Model includes maternal age, insurance, obesity, pulmonary disease, and living children
Table 3: Maternal Characteristics by Symptom Presentation

<table>
<thead>
<tr>
<th>Maternal Characteristic</th>
<th>Symptoms Present</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Asymptomatic</td>
<td>Symptomatic</td>
<td>p-value</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n=24</td>
<td>n=77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maternal age (y)</td>
<td>31.0 (26.2-33.3)</td>
<td>30.4 (25.9-35.6)</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>Public insurance</td>
<td>17 (70.8%)</td>
<td>45 (59.2%)</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Nulliparous</td>
<td>6 (25.0%)</td>
<td>24 (31.6%)</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>Any living children</td>
<td>18 (75.0%)</td>
<td>52 (68.4%)</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>Number of living children</td>
<td>1 (1-2)</td>
<td>1 (0-1)</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>0 (0.0)</td>
<td>3 (4.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black or African American</td>
<td>11 (45.8%)</td>
<td>17 (22.4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>5 (20.8%)</td>
<td>18 (23.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other/unknown</td>
<td>8 (33.3%)</td>
<td>38 (50.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latina ethnicity</td>
<td>10 (41.7%)</td>
<td>43 (57.3%)</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>6 (25.0%)</td>
<td>34 (44.2%)</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>BMI at delivery (kg/m2) (n=50)</td>
<td>31.2 (28.6-36.5)</td>
<td>32.7 (28.9-34.5)</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>Obesity (n=50)</td>
<td>16 (70.0%)</td>
<td>19 (70.4%)</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Tobacco use (n=98)</td>
<td></td>
<td></td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>21 (91.3%)</td>
<td>68 (90.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Past</td>
<td>2 (8.7%)</td>
<td>5 (6.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>0 (0.0%)</td>
<td>2 (2.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any maternal chronic disease (n=95)</td>
<td>11 (47.8%)</td>
<td>31 (43.1%)</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>Pre-existing diabetes</td>
<td>1 (4.2%)</td>
<td>0 (0.0%)</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>0 (0.0%)</td>
<td>7 (9.1%)</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>Pulmonary disease</td>
<td>5 (20.8%)</td>
<td>17 (22.1%)</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>Gestational diabetes (n=47)</td>
<td>2 (8.7%)</td>
<td>4 (16.7%)</td>
<td>0.67</td>
<td></td>
</tr>
</tbody>
</table>

BMI=body mass index

Data presented as median (interquartile range) or n (%)
Figure 1: Prevalence of SARS-CoV2 infection stratified by the number of living children
Figure 2: Timeline of study recruitment
SARS-CoV2 Positive with symptoms
March 19, 2020-April 6, 2020
13 Patients

SARS-CoV2 Positive and SARS-CoV2 Negative
April 7, 2020 to May 19, 2020
1391 Patients

SARS-CoV2 Positive with or without symptoms
May 20, 2020 to May 31, 2020
14 Patients

1418 Patients
Total Patients Included
STATEMENT OF AUTHORSHIP

Each author is required to submit a signed Statement of Authorship upon submission. This applies to all submission types including Editorials, Letters to the Editor, etc.

Date: 6/24/20
Manuscript # (if available):

Manuscript title: Risk Factors for SARS-CoV2 Infection in Pregnant Women

Corresponding author: Allie Sakowicz

Authors may either sign the same form or submit individually

I am an author on this submission, have adhered to all editorial policies for submission as described in the Information for Authors, attest to having met all authorship criteria, and all potential conflicts of interest / financial disclosures appears on the title page of the submission.

Signatures are required - typed signatures are unacceptable.

Typed or CLEARLY Printed Name: **Allie Sakowicz**

Signature:

Typed or CLEARLY Printed Name: **Alexander Ayala**

Signature:

Typed or CLEARLY Printed Name: **Chideraa Ukeje**

Signature:

Typed or CLEARLY Printed Name: **Celeste Witting**

Signature:

Typed or CLEARLY Printed Name: **William A. Grobman**

Signature:
Typed or CLEARLY Printed Name: **Emily S. Miller**
Signature:

Typed or CLEARLY Printed Name: **Signature:**

Typed or CLEARLY Printed Name: **Signature:**

Each author is required to submit a signed Statement of Authorship upon submission. This applies to all submission types including Editorials, Letters to the Editor, etc.

Date: 6/24/20

Manuscript title: Risk Factors for SARS-CoV2 Infection in Pregnant Women

Corresponding author: Allie Sakowicz

Authors may either sign the same form or submit individually

I am an author on this submission, have adhered to all editorial policies for submission as described in the Information for Authors, attest to having met all authorship criteria, and all potential conflicts of interest / financial disclosures appears on the title page of the submission.

Signatures are required - typed signatures are unacceptable.

Typed or CLEARLY Printed Name: Allie Sakowicz
Signature:

Typed or CLEARLY Printed Name: Alexander Ayala
Signature:

Typed or CLEARLY Printed Name: Chideraa Ukeje
Signature:

Typed or CLEARLY Printed Name: Celeste Witting
Signature:

Typed or CLEARLY Printed Name: William A. Grobman
Signature:
Typed or CLEARLY Printed Name: **Emily S. Miller**

Signature:

Typed or CLEARLY Printed Name: [Signature]

Typed or CLEARLY Printed Name: [Signature]
Each author is required to submit a signed Statement of Authorship upon submission. This applies to all submission types including Editorials, Letters to the Editor, etc.

Date: 6/24/20
Manuscript # (if available):

Manuscript title: Risk Factors for SARS-CoV2 Infection in Pregnant Women

Corresponding author: Allie Sakowicz

Authors may either sign the same form or submit individually

I am an author on this submission, have adhered to all editorial policies for submission as described in the Information for Authors, attest to having met all authorship criteria, and all potential conflicts of interest / financial disclosures appears on the title page of the submission.

Signatures are required - typed signatures are unacceptable. Typed

Typed or CLEARLY Printed Name: Allie Sakowicz

Signature:

Typed or CLEARLY Printed Name: Alexander Ayala

Signature:

Typed or CLEARLY Printed Name: Chideraa Ukeje

Signature:

Typed or CLEARLY Printed Name: Celeste Witting

Signature:

Typed or CLEARLY Printed Name: William A. Grobman

Signature:
STATEMENT OF AUTHORSHIP

Each author is required to submit a signed Statement of Authorship upon submission. This applies to all submission types including Editorials, Letters to the Editor, etc.

Date: 6/24/20

Manuscript title: Risk Factors for SARS-CoV2 Infection in Pregnant Women

Corresponding author: Allie Sakowicz

Authors may either sign the same form or submit individually

I am an author on this submission, have adhered to all editorial policies for submission as described in the Information for Authors, attest to having met all authorship criteria, and all potential conflicts of interest / financial disclosures appears on the title page of the submission.

Signatures are required - typed signatures are unacceptable.

Typed or CLEARLY Printed Name: Allie Sakowicz
Signature:

Typed or CLEARLY Printed Name: Alexander Ayala
Signature:

Typed or CLEARLY Printed Name: Chideraa Ukeje
Signature:

Typed or CLEARLY Printed Name: Celeste Witting
Signature:

Typed or CLEARLY Printed Name: William A. Grobman
Signature:
Typed or CLEARLY Printed Name: **Emily S. Miller**
Signature:

Typed or CLEARLY Printed Name:
Signature:

Typed or CLEARLY Printed Name:
Signature:

Typed or CLEARLY Printed Name:
Signature: