Pre-procedural asymptomatic COVID-19 in obstetric and surgical units

Jeannie C. KELLY, MD, MS, Nandini RAGHURAMAN, MD, MS, Arvind PALANISAMY, MD, FRCA, Molly J. STOUT, MD, MSCI, Ebony B. CARTER, MD, MPH

PII: S0002-9378(20)31102-9
DOI: https://doi.org/10.1016/j.ajog.2020.09.023
Reference: YMOB 13500


Received Date: 14 September 2020
Accepted Date: 18 September 2020


This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier Inc. All rights reserved.
Pre-procedural asymptomatic COVID-19 in obstetric and surgical units

Jeannie C. KELLY,1 MD, MS, Nandini RAGHURAMAN,1 MD, MS, Arvind PALANISAMY,2 MD, FRCA, Molly J. STOUT,3 MD, MSCI, Ebony B. CARTER,1 MD, MPH

1. Washington University School of Medicine, Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, St. Louis, MO
2. Washington University School of Medicine, Department of Anesthesiology, Division of Obstetric Anesthesiology, St. Louis, MO
3. University of Michigan, Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Ann Arbor, MI

Jeannie C. Kelly, MD, MS
Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine
4901 Forest Park Ave., Center for Outpatient Health, 10th Floor, Campus Box 8064
St. Louis, MO 63108; P: (314) 747-6788 F: (314) 747-1429 Email: jckelly@wustl.edu

The authors report no conflicts of interest.

Financial support for research: none

WORD COUNT: 498
CONDENSATION: N/A

SHORT TITLE: Asymptomatic pre-procedural COVID-19
ABSTRACT: N/A

KEY WORDS: COVID-19, SARS-CoV-2, asymptomatic pre-procedural infection
OBJECTIVE

Asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains a challenge, accounting for nearly half of all infections.\textsuperscript{1} Infectivity of asymptomatic patients can extend past 14 days, and samples isolated from their respiratory tracts have similar viral loads to symptomatic patients.\textsuperscript{1,2} To mitigate surgical risk to patients and exposure of healthcare workers (HCW), universal testing for SARS-CoV-2 has been suggested for all patients prior to planned procedures,\textsuperscript{3} including delivery,\textsuperscript{4} regardless of symptoms. Pre-procedural asymptomatic infection (PAI) rates in Obstetrics have been reported has high as 14%,\textsuperscript{4} but is unknown in the general surgical population. We sought to compare SARS-CoV-2 PAI rates between the obstetric unit (OU) and surgical units (SU) in one urban tertiary center.

STUDY DESIGN

We conducted a retrospective cohort study of universal pre-procedural SARS-CoV-2 tests performed before any surgery or delivery at Barnes-Jewish Hospital from May 28 - July 22, 2020, after resumption of elective cases. The study was deemed exempt as a quality improvement initiative. The primary outcome was rate of SARS-CoV-2 PAI, compared between an 18-bed OU and 72-room SU. All positive cases underwent chart review to confirm asymptomatic presentation. Multivariable logistic regression was used to adjust for confounders including age and race. Statistical analyses were conducted in R v4.0.2.\textsuperscript{5}

RESULTS

5543 pre-procedural tests were performed: 532 (9.7%) obstetric and 5011 (90.4%) surgical (Table a). Obstetric patients were younger (median age 29.0 vs 56.0, p<0.001), with a greater proportion of females (100% vs 50.4%, p<0.001) and Black (40.4% vs 22.7%) or Hispanic (9.4% vs 1.5%) race (p<0.001). Overall, there were 39 (0.7%) cases of PAI (25/532,
4.7% OU vs. 14/5011, 0.3% SU; p<0.001). After adjusting for age and race, obstetric patients had significantly higher odds of SARS-CoV-2 PAI compared to surgical patients (aOR 4.7, 95% CI 2.3-10.6). After excluding males, the odds of PAI remained significantly higher in the OU (aOR 9.6, 95% CI 92.8-48.3, Table b).

CONCLUSION

The SARS-CoV-2 PAI rate is 15.7 times higher on the OU (4.7%) compared to the SU (0.3%) in one hospital. A significant difference persists after accounting for age, race, and sex. As hospitals resume normal surgical volume and enact universal pre-procedural testing policies, testing capacity remains limited and rationing of supplies is necessary. Our results emphasize the need to prioritize testing and personal protective equipment in OUs, where higher rates of asymptomatic infection increase the potential of spread, particularly during the second stage of labor with prolonged HCW exposure in an aerosol-heavy environment. Whether different background characteristics of obstetric and surgical patients can fully account for the discordance of PAI rates, or whether pregnancy-induced immunomodulation increases the likelihood of asymptomatic infection, is an important question that requires further investigation.

Our study is limited by generalizability due to sampling in one hospital. However, the significant difference between the OU and SU underscores the importance of surveillance in populations who are at increased risk for disease. Focused SARS-CoV-2 obstetric studies could generate valuable information regarding asymptomatic infection, which remains a poorly understood but critically important component of the pandemic.
REFERENCES


Table. Background characteristics of patients undergoing pre-procedural testing for SARS-CoV-2 (a) and asymptomatic positive results of pre-procedural testing (b) compared between the obstetrical and surgical units.

<table>
<thead>
<tr>
<th>Background characteristic</th>
<th>Obstetric unit (N=532)</th>
<th>Surgical unit (N=5011)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Age in years</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (SD)</td>
<td>29.0 (6.0)</td>
<td>56.0 (18.1)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>&lt;18 (%)</td>
<td>6 (1.1)</td>
<td>41 (8.2)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>18-45 (%)</td>
<td>525 (98.7)</td>
<td>1349 (26.9)</td>
<td></td>
</tr>
<tr>
<td>&gt;45 (%)</td>
<td>1 (0.2)</td>
<td>3621 (72.2)</td>
<td></td>
</tr>
<tr>
<td><strong>Sex</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female (%)</td>
<td>532 (100.0)</td>
<td>2524 (50.4)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td><strong>Race (%)</strong></td>
<td></td>
<td></td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>White</td>
<td>245 (46.2)</td>
<td>3708 (74.0)</td>
<td></td>
</tr>
<tr>
<td>Black or African American</td>
<td>214 (40.4)</td>
<td>1136 (22.7)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>13 (2.4)</td>
<td>47 (0.9)</td>
<td></td>
</tr>
<tr>
<td>Pacific Islander</td>
<td>3 (0.6)</td>
<td>4 (0.1)</td>
<td></td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>1 (0.2)</td>
<td>4 (0.1)</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>50 (9.4)</td>
<td>73 (1.5)</td>
<td></td>
</tr>
<tr>
<td>Unable to Answer</td>
<td>3 (0.6)</td>
<td>21 (0.4)</td>
<td></td>
</tr>
<tr>
<td>Declined</td>
<td>3 (0.6)</td>
<td>18 (0.4)</td>
<td></td>
</tr>
</tbody>
</table>

b. Asymptomatic positive results of universal pre-procedural testing

<p>| Overall Asymptomatic Positive (%) | 25 (4.7) | 14 (0.3) | &lt;0.001 |</p>
<table>
<thead>
<tr>
<th></th>
<th>OR (95% CI)</th>
<th>aOR† (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13.2 (6.9-25.2)</td>
<td>4.7 (2.3-10.6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>Median (SD)</th>
<th>&lt;18 (%)</th>
<th>18-45 (%)</th>
<th>&gt;45 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30.0 (5.9)</td>
<td>1 (4.0)</td>
<td>24 (96.0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>38.0 (19.8)</td>
<td>1 (7.1)</td>
<td>9 (64.3)</td>
<td>4 (28.6)</td>
</tr>
</tbody>
</table>

| Female (%)           | 25 (100)        | 5 (36)        |                | <0.001        |

<table>
<thead>
<tr>
<th>Race (%)</th>
<th>White</th>
<th>Black or African American</th>
<th>Asian</th>
<th>Pacific Islander</th>
<th>American Indian or Alaska Native</th>
<th>Hispanic</th>
<th>Unable to Answer</th>
<th>Declines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 (0.0)</td>
<td>2 (8.0)</td>
<td>10 (40.0)</td>
<td>0 (0.0)</td>
<td>1 (4.0)</td>
<td>0 (0.0)</td>
<td>11 (44.0)</td>
<td>1 (4.0)</td>
</tr>
<tr>
<td></td>
<td>4 (28.6)</td>
<td>9 (64.3)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surgical Service (%)</th>
<th>Obstetrics</th>
<th>Orthopaedic Surgery</th>
<th>Ophthalmology</th>
<th>Acute Critical Care Surgery</th>
<th>Minimally Invasive Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25 (100.0)</td>
<td>7 (50.0)</td>
<td>2 (14.2)</td>
<td>4 (28.6)</td>
<td>1 (7.1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Asymptomatic Positive, Men excluded (%)</th>
<th>OR (95% CI)</th>
<th>aOR† (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25 (4.7)</td>
<td>9.6 (2.8-48.3)</td>
</tr>
</tbody>
</table>

|                | 24.8 (9.4-65.1) | 9.6 (2.8-48.3) |

|                | --             | --             | <0.001        |

|                |                |                | <0.001        |
SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2

OR: odds ratio; aOR: adjusted odds ratio; SD: standard deviation; CI: confidence interval

† Adjusted for age (as categorical variable) and race

Statistically significant results bolded
STATEMENT OF AUTHORSHIP

Each author is required to submit a signed Statement of Authorship upon submission. This applies to all submission types including Editorials, Letters to the Editor, etc.

Date: 9/13/20    Manuscript # (if available): _____

Manuscript title: Pre-procedural asymptomatic COVID-19 in obstetric and surgical units

Corresponding author: Jeannie C. Kelly

Authors may either sign the same form or submit individually

I am an author on this submission, have adhered to all editorial policies for submission as described in the Information for Authors, attest to having met all authorship criteria, and all potential conflicts of interest / financial disclosures appears on the title page of the submission.

Signatures are required - typed signatures are unacceptable.

Typed or CLEARLY Printed Name: Arvind Palanisamy

Signature:

Typed or CLEARLY Printed Name:

Signature:
STATEMENT OF AUTHORSHIP

Each author is required to submit a signed Statement of Authorship upon submission. This applies to all submission types including Editorials, Letters to the Editor, etc.

Date: 9/13/20  Manuscript # (If available): _____

Manuscript title: Pre-procedural asymptomatic COVID-19 in obstetric and surgical units

Corresponding author: Jeannie C. Kelly

Authors may either sign the same form or submit individually

I am an author on this submission, have adhered to all editorial policies for submission as described in the Information for Authors, attest to having met all authorship criteria, and all potential conflicts of interest / financial disclosures appears on the title page of the submission.

Signatures are required - typed signatures are unacceptable.

Typed or CLEARLY Printed Name: Molly Stout, MD

Signature: 

Typed or CLEARLY Printed Name:  

Signature: