Worse Outcomes of Pregnancy in COVID-19 Infection during Parturition may be due to Referral Bias: Analysis in a Prospective Cohort of 963 pregnancies

Dr Mohini, MD, Dr S. Ahmed, MD, DM, Dr. V. Kasarla., MBBS, S.K. Rath, MD, Prof

PII: S0002-9378(21)00995-9
DOI: https://doi.org/10.1016/j.ajog.2021.08.058
Reference: YMOB 14051

Received Date: 10 June 2021
Revised Date: 26 August 2021
Accepted Date: 31 August 2021

Please cite this article as: Mohini Ahmed S, Kasarla. V, Rath SK, Worse Outcomes of Pregnancy in COVID-19 Infection during Parturition may be due to Referral Bias: Analysis in a Prospective Cohort of 963 pregnancies, American Journal of Obstetrics and Gynecology (2021), doi: https://doi.org/10.1016/j.ajog.2021.08.058.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Inc.
Worse Outcomes of Pregnancy in COVID-19 Infection during Parturition may be due to Referral Bias: Analysis in a Prospective Cohort of 963 pregnancies

Authors: Mohini, Sakir Ahmed, Vyshnavi Kasarla, Sudanshu Kumar Rath

Affiliations:

1. Dr Mohini, MD
 Dept of Obstetric and Gynaecology,
 Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, India.
 Email: sakir005@gmail.com

2. Dr S Ahmed, MD, DM
 Dept of Clinical Immunology and Rheumatology,
 Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, India.
 Email: sakir005@gmail.com
 ORCID: 0000-0003-4631-311X

3. Dr. V Kasarla. MBBS
 Dept of Obstetric and Gynaecology,
 Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, India.
 Email: vyshnavi1207@gmail.com

4. Prof S K Rath, MD
 Dept of Obstetric and Gynaecology,
 Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, India.
 Email: sudanshu.rath@kims.ac.in

Correspondence to: Prof S K Rath
 Professor and Head, Dept of Obstetric and Gynaecology,
 Kalinga Institute of Medical Sciences, KIIT University,
 Bhubaneswar, India 751024.
 Email: sudanshu.rath@kims.ac.in
 Phone: +919168479686

Conflicts of interest:
Sakir Ahmed has received honorarium as speaker from Pfizer(unrelated to the current study).
The other authors have no potential conflicts of interest.
Worse Outcomes of Pregnancy in COVID-19 Infection during Parturition may be due to Referral Bias: Analysis in a Monocentric Prospective Cohort of 963 pregnancies

Initial studies of COVID-19 suggested that pregnant women have more severe COVID-19 with an increased risk of pre-term birth, pre-term rupture of membranes and even maternal deaths. Later studies and systematic reviews showed different results. When pregnant women were universally screened, severe disease rates mirrored those of the normal population. Most studies on outcomes have not controlled for either pre-existing maternal risk factors or those acquired during pregnancy. Also, there is still some grey area in understanding how COVID-19 infection around the time of delivery affects pregnant women. Thus, we analysed if the apparent high risk of severe COVID-19 in referral centres was confounded due to concomitant other risk factors.

In our cohort from a single tertiary referral hospital in India, all pregnant women coming for delivery or with labour pain were universally screened for SARS-CoV-2 infection using RT-PCR from oronasopharyngeal samples. Patients who left the hospital before delivery were excluded. Of 963 pregnant women, 127 were COVID-19 positive. They were compared using tests for proportions in terms of maternal complications (Caesarean sections, antepartum and postpartum haemorrhage, pre-term rupture of membrane and pre-labour rupture of membrane, puerperal sepsis and mortality) and neonatal outcomes (APGAR scores, low birth weight, intensive care requirement, neonatal COVID-19 infection, neonatal sepsis and death). Then GLM (generalized linear models) were built to assess the contribution of various maternal risk factors and COVID-19 positivity on these outcomes.

Age, gravida, parity, gestational diabetes and pregnancy induced hypertension rates were similar between COVID-19 positive and negative cohorts [Supplementary Table 1]. The COVID-19 cohort had overrepresentation of various other pregnancy risk factors [Table 1]. The COVID-19 cohort had higher caesarean deliveries [87(68%) versus 445(53.3%) in negative cohort; p=0.02], postpartum haemorrhage [6(4.7) versus 1(0.1%), p<0.001], and maternal mortality [2(1.6%) versus 1(0.1%), p=0.048] [Supplementary Table 2]. Amongst neonatal outcomes, APGAR score was lower at 1 minute [mean(SD): 7.20(1.63) in COVID-19 versus 7.54(1.69) in controls; p=0.035] and at 5 minutes [mean(SD): 8.27(1.74) in COVID-19 versus 9.14(1.74) in controls; p<0.001] [Supplementary Table 3].

In the first GLM model on the mode of delivery, significant predictors were past caesarean sections, COVID-19 positivity, presence of PIH, and gestational diabetes [Supplementary Table 4]. In the second GLM model, bad maternal outcomes were only associated with the presence of PIH [Supplementary Table 5]. In the third GLM model, bad neonatal outcomes were associated with the presence of PIH or one of the seven other factors for high-risk pregnancy [Supplementary Table 6].
Thus, the associations found on univariate analysis reflects a possible referral bias where higher risk patients were being referred if they were COVID-19 positive than if negative.

This study reiterates that COVID-19 infection does not pose additional risk to pregnancy outcomes by itself. Earlier systematic reviews were hampered by the high heterogeneity of reported cohorts⁴. This was compounded by duplicate reporting of the same patients in different cohorts, variable inclusion criteria of systematic reviews, and scarce and missing data⁵. More recent systematic reviews have shown that maternal deaths and neonatal outcomes were similar in deliveries conducted in COVID-19 mothers as compared to non-COVID-19⁶.

Limitations of our study include that we do not have the indications for caesarean deliveries in the cohort and that it was carried out in a tertiary centre that would receive more complicated cases.

It brings to light that COVID-19 positive mothers being treated at tertiary care centres have higher rates of caesarean section and higher morbidity and mortality possibly due to the extra underlying risk factors arising from a referral bias.

References:

Table 1: Comorbidities and pregnancy risk factors

<table>
<thead>
<tr>
<th>Condition</th>
<th>COVID-19 (n=127)</th>
<th>Controls (n=836)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-pregnancy comorbidity</td>
<td>26 (20.3%)</td>
<td>159(19.0%)</td>
<td>0.72</td>
</tr>
<tr>
<td>Hypertensive disease of pregnancy</td>
<td>9(7.0%)</td>
<td>64(7.7%)</td>
<td>>0.99</td>
</tr>
<tr>
<td>Gestational diabetes</td>
<td>6(4.7%)</td>
<td>32(3.8%)</td>
<td>0.62</td>
</tr>
<tr>
<td>Other pregnancy related risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>799(95.70%)</td>
<td>117(91.40%)</td>
<td>NA</td>
</tr>
<tr>
<td>Twin pregnancy</td>
<td>7(0.80%)</td>
<td>1(0.80%)</td>
<td><0.01*</td>
</tr>
<tr>
<td>Breech presentation</td>
<td>10(1.20%)</td>
<td>8(6.30%)</td>
<td><0.01*</td>
</tr>
<tr>
<td>IUGR</td>
<td>3(0.40%)</td>
<td>1(0.80%)</td>
<td><0.01*</td>
</tr>
<tr>
<td>In-vitro fertilization</td>
<td>2(0.20%)</td>
<td>0</td>
<td>0.017*</td>
</tr>
<tr>
<td>Rh negative pregnancy</td>
<td>8(1.00%)</td>
<td>1(0.80%)</td>
<td><0.001**</td>
</tr>
<tr>
<td>Thalassemia</td>
<td>2(0.20%)</td>
<td>0</td>
<td>0.017*</td>
</tr>
<tr>
<td>Obstetric cholestasis</td>
<td>4(0.5%)</td>
<td>0</td>
<td><0.001**</td>
</tr>
</tbody>
</table>
Supplementary Table 1: Demographics of the cohort

<table>
<thead>
<tr>
<th></th>
<th>COVID-19 positive (n=127)</th>
<th>COVID-19 negative (n=836)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Deviation</td>
<td>Mean</td>
</tr>
<tr>
<td>Age</td>
<td>28.18</td>
<td>4.64</td>
<td>27.71</td>
</tr>
<tr>
<td>Gravida</td>
<td>1.69</td>
<td>0.98</td>
<td>1.72</td>
</tr>
<tr>
<td>Parity</td>
<td>0.42</td>
<td>0.58</td>
<td>0.51</td>
</tr>
<tr>
<td>Period of gestation at delivery</td>
<td>36.94</td>
<td>3.14</td>
<td>37.42</td>
</tr>
<tr>
<td>Body Mass Index</td>
<td>28.00</td>
<td>1.33</td>
<td>28.12</td>
</tr>
</tbody>
</table>
Supplementary Table 2: Maternal outcomes (univariate analysis)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>COVID-19 (n=127)</th>
<th>Controls (n=836)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caesarean delivery</td>
<td>87(68%)</td>
<td>445(53.3%)</td>
<td>0.002*</td>
</tr>
<tr>
<td>Maternal ICU requirement</td>
<td>3(2.3%)</td>
<td>6(0.7%)</td>
<td>0.10</td>
</tr>
<tr>
<td>Antepartum haemorrhage</td>
<td>0</td>
<td>15(1.8%)</td>
<td>0.11</td>
</tr>
<tr>
<td>Pre-term pre-mature rupture of membranes</td>
<td>1(0.8%)</td>
<td>35(4.2%)</td>
<td>0.036*</td>
</tr>
<tr>
<td>Pre-term rupture of membranes</td>
<td>2(1.6%)</td>
<td>38(4.6%)</td>
<td>0.08</td>
</tr>
<tr>
<td>Postpartum haemorrhage</td>
<td>6(4.7%)</td>
<td>1(0.1%)</td>
<td><0.001**</td>
</tr>
<tr>
<td>Puerperal sepsis</td>
<td>0</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>Maternal mortality</td>
<td>2(1.6%)</td>
<td>1(0.1%)</td>
<td>0.048*</td>
</tr>
<tr>
<td></td>
<td>COVID-19 (n=127)</td>
<td>Controls (n=836)</td>
<td>P-value</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>APGAR score at 1min Mean (SD)</td>
<td>7.20(1.63)</td>
<td>7.54(1.69)</td>
<td>0.035*</td>
</tr>
<tr>
<td>APGAR score at 5min Mean (SD)</td>
<td>8.27(1.72)</td>
<td>9.14(1.74)</td>
<td><0.001**</td>
</tr>
<tr>
<td>Low birth weight <2kg</td>
<td>16(17.4%)</td>
<td>127(24.1%)</td>
<td>0.19</td>
</tr>
<tr>
<td>Neonatal ICU requirement</td>
<td>28(21.9%)</td>
<td>206(24.7%)</td>
<td>0.58</td>
</tr>
<tr>
<td>Neonatal COVID-19 positivity</td>
<td>5(3.9%)</td>
<td>0</td>
<td><0.001**</td>
</tr>
<tr>
<td>Neonatal sepsis</td>
<td>0</td>
<td>2(0.2%)</td>
<td>0.75</td>
</tr>
<tr>
<td>Neonatal death</td>
<td>2(1.6%)</td>
<td>14(1.7%)</td>
<td>0.64</td>
</tr>
</tbody>
</table>
Supplementary Table 4: GLM model for mode of delivery

<table>
<thead>
<tr>
<th>Parameter</th>
<th>B</th>
<th>Std. Error</th>
<th>Wald Chi-Square</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-2.625</td>
<td>2.0160</td>
<td>1.696</td>
<td>.193</td>
</tr>
<tr>
<td>Past LSCS</td>
<td>-2.590</td>
<td>.2819</td>
<td>84.436</td>
<td><.001*</td>
</tr>
<tr>
<td>[COVID status=negative] vs [COVID status=positive]</td>
<td>.655</td>
<td>.2196</td>
<td>8.909</td>
<td>.003*</td>
</tr>
<tr>
<td>[Gestational diabetes = no] vs [Gestational diabetes = yes]</td>
<td>1.184</td>
<td>.4248</td>
<td>7.771</td>
<td>.005*</td>
</tr>
<tr>
<td>[Other risk factor = no] vs [Other risk factor = yes]</td>
<td>.607</td>
<td>.3412</td>
<td>3.167</td>
<td>.075</td>
</tr>
<tr>
<td>BMI</td>
<td>-.002</td>
<td>.0535</td>
<td>.002</td>
<td>.965</td>
</tr>
<tr>
<td>Haemoglobin</td>
<td>.050</td>
<td>.0812</td>
<td>.377</td>
<td>.539</td>
</tr>
<tr>
<td>Gravida</td>
<td>-.068</td>
<td>.1277</td>
<td>.284</td>
<td>.594</td>
</tr>
<tr>
<td>Parity</td>
<td>.120</td>
<td>.2087</td>
<td>.332</td>
<td>.564</td>
</tr>
<tr>
<td>Period of Gestation at delivery</td>
<td>-.032</td>
<td>.0232</td>
<td>1.883</td>
<td>.170</td>
</tr>
</tbody>
</table>
Supplementary Table 5: GLM model for maternal complications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>B</th>
<th>Std. Error</th>
<th>Wald Chi-Square</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>.237</td>
<td>2.8844</td>
<td>.007</td>
<td>.935</td>
</tr>
<tr>
<td>Past LSCS</td>
<td>.472</td>
<td>.3010</td>
<td>2.456</td>
<td>.117</td>
</tr>
<tr>
<td>[COVID status=negative] vs [COVID status=positive]</td>
<td>-.204</td>
<td>.3296</td>
<td>.381</td>
<td>.537</td>
</tr>
<tr>
<td>[Other risk factor = no] vs [Other risk factor = yes]</td>
<td>.586</td>
<td>.3929</td>
<td>2.228</td>
<td>.136</td>
</tr>
<tr>
<td>BMI</td>
<td>-.011</td>
<td>.0797</td>
<td>.020</td>
<td>.888</td>
</tr>
<tr>
<td>Haemoglobin</td>
<td>.171</td>
<td>.1133</td>
<td>2.275</td>
<td>.131</td>
</tr>
<tr>
<td>Gravida</td>
<td>-.055</td>
<td>.1804</td>
<td>.093</td>
<td>.760</td>
</tr>
<tr>
<td>Parity</td>
<td>-.229</td>
<td>.2953</td>
<td>.602</td>
<td>.438</td>
</tr>
<tr>
<td>Period of Gestation at delivery</td>
<td>-.033</td>
<td>.0355</td>
<td>.864</td>
<td>.353</td>
</tr>
</tbody>
</table>
Supplementary Table 6: GLM model for poor neonatal outcomes

<table>
<thead>
<tr>
<th>Parameter</th>
<th>B</th>
<th>Std. Error</th>
<th>Wald Chi-Square</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-2.836</td>
<td>2.0216</td>
<td>1.967</td>
<td>.161</td>
</tr>
<tr>
<td>Past LSCS</td>
<td>.335</td>
<td>.1940</td>
<td>2.984</td>
<td>.084</td>
</tr>
<tr>
<td>[COVID status= negative] vs [COVID status= positive]</td>
<td>-.298</td>
<td>.2286</td>
<td>1.695</td>
<td>.193</td>
</tr>
<tr>
<td>[hypertensive disease of pregnancy= no] vs [hypertensive disease of pregnancy= yes]</td>
<td>1.129</td>
<td>.2533</td>
<td>19.850</td>
<td><.001*</td>
</tr>
<tr>
<td>[Other risk factor = no] vs [Other risk factor = yes]</td>
<td>.730</td>
<td>.3219</td>
<td>5.145</td>
<td>.023*</td>
</tr>
<tr>
<td>BMI</td>
<td>.115</td>
<td>.0548</td>
<td>4.383</td>
<td>.036</td>
</tr>
<tr>
<td>Haemoglobin</td>
<td>-.054</td>
<td>.0836</td>
<td>.416</td>
<td>.519</td>
</tr>
<tr>
<td>Gravida</td>
<td>-.124</td>
<td>.1221</td>
<td>1.034</td>
<td>.309</td>
</tr>
<tr>
<td>Parity</td>
<td>.070</td>
<td>.2070</td>
<td>.114</td>
<td>.735</td>
</tr>
<tr>
<td>Period of Gestation at delivery</td>
<td>-.013</td>
<td>.0239</td>
<td>.308</td>
<td>.579</td>
</tr>
</tbody>
</table>